浙江省人大代表、安吉技师学院电工技师杨应政 受访者 供图
“人才建设过程中出现的人才划分不明确、重引进轻培养等诸多问题,阻碍了高层次人才的建设进程。”杨应政认为,对此学校应予以重视,加强政策扶持,加大资金投入,注重人才的引进和培养。
翻看今年政府工作报告,“大力发展职业教育,扩大长学制和本科层次职业教育招生规模”让杨应政感到振奋。
杨应政接受记者采访时表示,教育部门可根据技术学校发展情况,探索出一套与学校发展目标一致的人才建设体系,包括完善人才政策体系,做到精准“引”、突出“高精尖缺”导向、聚焦人才“引育留”,精准拟定引才需求。
眼下,提高职业教育质量、适应性和吸引力,培养更多高素质技术技能人才,已成为加快建设教育强国、科技强国、人才强国的基础之一。其中,农业职业教育同样不容忽视。
培养“懂农业、有文化、技术高、会管理、善运营”的新型职业农民,是现代化农业人才建设的迫切需求,也是破解“三农”问题,提高农业农村劳动生产率、推动乡村振兴的关键举措。
浙江省人大代表、嘉善县美华水产养殖场场长杨珍 受访者 供图浙江省人大代表、嘉善县美华水产养殖场场长杨珍直言,目前农业职业教育认同度低、生源差、“爱农”思想教育不够、人才流失严重等成为明显短板。
针对上述问题,杨珍认为,需要构建系统化的农业职业教育体系,农业职业教育与普通高等教育的融合发展势在必行。
杨珍建议,打通和拓宽各级各类技术技能人才的成长空间和发展通道,满足“三农”发展对不同层次技术技能人才的需求;从办学体制、运行机制、培养模式等方面进行全方位改革创新;健全农业职业技术教育和职业培训制度,形成多主体参与的办学体制。
“要以现代农业产业技术技能标准体系为结合点,围绕解决农业生产中的现实问题,探索‘农科教融合、育训创一体’人才培养模式,更好赋能乡村振兴。”杨珍说。
“促进高质量充分就业,完善重点群体就业创业支持政策,深化职业技能培训”“建立终身职业技能培训机制”……翻阅政府工作报告,今后五年的规划透露出浙江加强保障、促进职业教育改革的决心。
针对报告中提出的“深化区域中高职一体化人才培养改革,推动职业教育与产业深度融合”,浙江省人大代表,中核核电运行管理有限公司董事长、党委书记黄潜深有感触。
黄潜直言,目前职业教育中学校办学条件设施设备亟待改善、校企合作“作而不合”、产教融合“合而不融”、保障机制缺乏统筹与协调等问题仍比较普遍。
对此,黄潜建议,切实保障职业教育经费投入,建立相适应的财政投入制度,确保职业教育高质量可持续发展;完善产教融合校企合作制度,优化有关校企合作、产教融合的相关地方性法规,从制度层面为职业教育改革发展提供保障和支撑。
“建立健全具有地方特色职业教育标准体系,进一步健全职业教育学校、专业、课程等建设标准,完善教学、实习实训和学徒制培养等基本规范,加强质量评价和财政税收保障机制建设,推动职业教育更好服务当地经济社会发展。”黄潜说。(完)
向善而生的AI助盲,让AI多一点,障碍少一点****** 有人说,盲人与世界之间,相差的只是一个黎明。在浪潮信息研发人员的心中,失去视力的盲人不会陷入永夜,科技的进步正在力图给每一个人以光明未来。 AI助盲在人工智能赛道上一直是最热门的话题之一。以前,让失明者重见光明依靠的是医学的进步或“奇迹”。而随着以“机器视觉+自然语言理解”为代表的多模态智能技术的爆发式突破,更多的失明者正在借助AI提供的感知、理解与交互能力,以另一种方式重新“看见世界”。 新契机:多模态算法或将造福数以亿计失明者 科学实验表明,在人类获取的外界信息中,来自视觉的占比高达70%~80%,因此基于AI构建机器视觉系统,帮助视障患者拥有对外界环境的视觉感知与视觉理解能力,无疑是最直接有效的解决方案。 一个优秀的AI助盲技术,需要通过智能传感、智能用户意图推理和智能信息呈现的系统化发展,才能构建信息无障碍的交互界面。仅仅依靠“一枝独秀”超越人类水平的单模态人工智能比如计算机视觉技术还远远不够,以“机器视觉+自然语言理解”为代表的多模态算法的突破才是正确的新方向和新契机。 多个模态的交互可以提升AI的感知、理解与交互能力,也为AI理解并帮助残障人士带来了更多可能。浪潮信息研发人员介绍说,多模态算法在AI助盲领域的应用一旦成熟,将能够造福数以亿计的失明者。据世卫组织统计,全球至少22亿人视力受损或失明,而我国是世界上盲人最多的国家,占世界盲人总数的18%-20%,每年新增的盲人数量甚至高达45万。 大挑战:如何看到盲人“眼中”的千人千面 AI助盲看似简单,但多模态算法依然面临重大挑战。 多模态智能算法,营造的是沉浸式人机交互体验。在该领域,盲人视觉问答任务成为学术界研究AI助盲的起点和核心研究方向之一,这项研究已经吸引了全球数以万计的视障患者参与,这些患者们上传自己拍摄的图像数据和相匹配的文本问题,形成了最真实的模型训练数据集。 但是在现有技术条件下,盲人视觉问答任务的精度提升面临巨大挑战:一方面是盲人上传的问题类型很复杂,比如说分辨冰箱里的肉类、咨询药品的服用说明、挑选独特颜色的衬衣、介绍书籍内容等等。 另一方面,由于盲人的特殊性,很难提取面前物体的有效特征。比如盲人在拍照时,经常会产生虚焦的情况,可能上传的照片是模糊的或者没有拍全,或者没拍到关键信息,这就给AI推理增加了难度。 为推动相关研究,来自卡内基梅隆大学等机构的学者们共同构建了一个盲人视觉数据库“VizWiz”,并发起全球多模态视觉问答挑战赛。挑战赛是给定一张盲人拍摄的图片和问题,然后要求给出相应的答案,解决盲人的求助。 另外,盲人的视觉问答还会遭遇到噪声干扰的衍生问题。比如说,盲人逛超市,由于商品外观触感相似,很容易犯错,他可能会拿起一瓶醋却询问酱油的成分表,拿起酸奶却询问牛奶的保质期等等。这种噪声干扰往往会导致现有AI模型失效,没法给出有效信息。 最后,针对不同盲人患者的个性化交互服务以及算法自有的反馈闭环机制,同样也是现阶段的研发难点。 多解法:浪潮信息AI助盲靶向消灭痛点 AI助盲哪怕形式百变,无一例外都是消灭痛点,逐光而行。浪潮信息多模态算法研发团队正在推动多个领域的AI助盲研究,只为帮助盲人“看”到愈发精彩的世界。 在VizWiz官网上公布的2万份求助中,盲人最多的提问就是想知道他们面前的是什么东西,很多情况下这些物品没法靠触觉或嗅觉来做出判断,例如 “这本书书名是什么?”为此研发团队在双流多模态锚点对齐模型的基础上,提出了自监督旋转多模态模型,通过自动修正图像角度及字符语义增强,结合光学字符检测识别技术解决“是什么”的问题。 盲人所拍摄图片模糊、有效信息少?研发团队提出了答案驱动视觉定位与大模型图文匹配结合的算法,并提出多阶段交叉训练策略,具备更充分的常识能力,低质量图像、残缺的信息,依然能够精准的解答用户的求助。 目前浪潮信息研发团队在盲人视觉问答任务VizWiz-VQA上算法精度已领先人类表现9.5个百分点,在AI助盲领域斩获世界冠军两项、亚军两项。 真实场景中的盲人在口述时往往会有口误、歧义、修辞等噪声。为此,研发团队首次提出视觉定位文本去噪推理任务FREC,FREC提供3万图片和超过25万的文本标注,囊括了口误、歧义、主观偏差等多种噪声,还提供噪声纠错、含噪证据等可解释标签。同时,该团队还构建了首个可解释去噪视觉定位模型FCTR,噪声文本描述条件下精度较传统模型提升11个百分点。上述研究成果已发表于ACM Multimedia 2022会议,该会议为国际多媒体领域最顶级会议、也是该领域唯一CCF推荐A类国际会议。 在智能交互研究方面上,浪潮信息研发团队构建了可解释智能体视觉交互问答任务AI-VQA,同时给出首个智能体交互行为理解算法模型ARE。该研究成果已发表于ACM Multimedia 2022会议。该研究项目的底层技术未来可广泛应用于AI医疗诊断、故事续写、剧情推理、危情告警、智能政务等多模态交互推理场景。 眼球虽然对温度并不敏感,但浪潮信息的研发团队,却在努力让盲人能“看”到科技的温度,也希望吸引更多人一起推动人工智能技术在AI助盲、AI反诈、AI诊疗、AI灾情预警等更多场景中的落地。有AI无碍,跨越山海。科技的伟大之处不仅仅在于改变世界,更重要的是如何造福人类,让更多的不可能变成可能。当科技成为人的延伸,当AI充满人性光辉,我们终将在瞬息万变的科技浪潮中感受到更加细腻温柔的善意,见证着更加光明宏大的远方。 (文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() |