春运期间预计进出京旅客总量达2536万人次 探亲流是主体******
中新网北京1月7日电 (杜燕 徐婧)2023年春运从2023年1月7日(腊月十六)开始至2月15日(正月二十五)结束,共计40天。北京市交通委今天表示,今年,春运处于疫情防控优化调整转段期,预计出行需求将得到释放。据预测,铁路、民航、省际客运进出京总量2536万人次,日均63万人次;高速公路日均180万辆次。
务工、学生流呈现错峰分批特征
北京市交通委表示,今年,受疫情影响,务工、学生流呈现错峰分批特征,春运前陆续离京返乡,春运后开始返校返岗。旅游流受疫情感染期影响恢复有限。探亲流仍是主体,预计在春节假期前开始陆续出京,节后集中返京。
北京市交通委表示,预计节前2-3天将迎来出京客流高峰,正月初七、正月十五前后迎来两个返京客流高峰,进出京客运量达80万人次。高速公路交通量高峰出现在2月10日,达205万辆次。
北京市交通委指出,总体来说,春节前后交通呈现快速恢复性增长趋势。北京将对交通发展趋势持续开展实时监测和分析研判,及时发布出行提示信息,提前做好运力准备等保障工作。
旅客在北京西站乘坐春运首日北京首趟始发列车G6701次列车。 中新社记者 贾天勇 摄不查验乘客核酸阴性证明和健康码
北京市交通委表示,北京严格落实疫情防控优化调整各项措施,认真实施铁路、公路、民航、邮政快递等领域疫情防控政策。不再对乘客查验核酸检测阴性证明和健康码,不再开展落地检,不再实施乘客测温。有序恢复已暂停的客运服务。做好从业人员防护和场站、交通运输工具防疫管理。
同时,倡导乘客做自己健康的第一责任人,旅行途中全程戴口罩,主动减少聚集,出现发热等症状时避免乘坐公共交通工具。
加强运输服务和客运组织保障便捷出行
北京市交通委表示,将保障市内交通运行平稳。
公路方面继续实施春节假日高速公路免费通行政策。在进出京高峰期间,增加收费站现场保障力量,对车流量大的站口加强应急值守,结合交通量情况,合理配置车道,加强人员疏导。
省际客运方面,做好运力筹措,根据客流及时调整运营计划,动态优化运力调配。
轨道交通高峰时段加强站台、换乘通道楼、扶梯等重点部位监控,做好携带大包乘客的引导。针对返京高峰火车站、机场可能出现大客流的情况,做好4号线、7号线等重点接驳线路夜间延时运营保障的准备。
地面公交增加途经交通枢纽公交线路运营班次,强化运力供给。加强火车站、公园景区、商场及周边公交线路和站台的调度指挥和客流疏导,保障运营秩序。出租汽车做好机场、火车站和主要客流集散地的运力保障,加强与调度站、保点出租企业、交通台、调度中心联动,组织站区周边空驶车辆前往运营。
强化货运服务,做好保通保畅。春节“免通”期间继续实行大型车辆与7座以下客车通道分流,各收费站加强疏堵保畅、提升通行效率,共开辟333条绿通车道,保障绿通车快速查验、快速过站。强化服务区和收费站服务,高速服务区每日做好环境清洁消毒和通风换气,继续为货车司乘人员提供专区停靠、免费开水、餐饮售卖等服务。(完)
我国空间新技术试验卫星第二批科学与技术成果发布****** 记者从中科院微小卫星创新研究院获悉,我国“创新X”系列首发星——空间新技术试验卫星第二批科学与技术成果近日发布。这批成果主要包括获得我国首幅太阳过渡区图像、探测到迄今最亮的伽马射线暴、首次获得全球磁场勘测图等。 01 46.5nm极紫外成像仪获得我国首幅太阳过渡区图像 46.5nm极紫外太阳成像仪(SUTRI)是国际首台基于多层膜窄带滤光技术的46.5nm太阳成像仪,用于探测50万度左右的太阳过渡区(太阳色球与日冕之间的层次),由国家天文台联合北京大学、同济大学、西安光学精密机械研究所和微小卫星创新研究院共同研制。自2022年8月30日载荷开机以来已经获取了超过1.6TB的探测数据,成功实现了我国首次太阳过渡区探测。这也是人类近半个世纪来首次在46.5nm波段拍摄太阳的完整图像。SUTRI拍摄的图像清晰地显示了过渡区网络组织、活动区冕环系统、日珥和暗条、冕洞等结构(如图2),这些结构的观测特征表明,SUTRI拍摄的确实是从太阳低层大气往日冕过渡的结构,符合预期。SUTRI已探测到多个耀斑、喷流、日珥爆发和日冕物质抛射事件(如图3),表明其数据适合研究各种类型的太阳活动现象。此外,SUTRI还发现活动区普遍存在50万度左右的、朝向太阳表面的物质流动,这些流动在太阳大气的物质循环过程中占有重要地位。目前SUTRI一切功能正常,在轨测试和标定结束后,SUTRI观测的科学数据将向国内外太阳物理和空间天气同行全部开放。 △图1 “创新X”首发星——空间新技术试验卫星(SATech-01) △图2 SUTRI在2022年9月29日观测到的太阳活动图(图片由SUTRI科学团队提供) △图3 SUTRI在2022年9月23日观测到的一次太阳爆发事件(图片由SUTRI科学团队提供) 02 高能爆发探索者(HEBS)捕获到迄今为止最亮伽马暴 由中科院高能物理研究所研制的高能爆发探索者(HEBS)于北京时间2022年10月9日21时17分,与我国慧眼卫星和高海拔宇宙线观测站同时探测到迄今最亮的伽马射线暴(编号为GRB 221009A)。根据HEBS的精确测量结果,该伽马暴比以往人类观测到的最亮伽马射线暴还亮10倍以上。由于该伽马射线暴的亮度极高,国际上绝大部分探测设备均发生了严重的数据饱和丢失、脉冲堆积等仪器效应,难以获得精确测量结果。HEBS凭借创新的探测器设计以及新颖的高纬度观测模式设置,探测器经受住了高计数率的考验,获得了高时间分辨率的光变曲线,以及10千电子伏至5兆电子伏的宽能段能谱。HEBS极为宝贵的精确测量结果对于揭示伽马射线暴的起源和辐射机制具有重要意义。 国家天文台和上海技术物理研究所研制的EP探路者龙虾眼X射线成像仪(LEIA)于10月12日也成功对这一伽马射线暴开展了观测,探测到了伽马射线暴X射线余辉。这也是国际上首次用龙虾眼型X射线望远镜探测到伽马射线暴。 △图4 高能爆发探索者(HEBS)发现并精确测量迄今最亮的伽马射线暴,打破多项纪录。 03 国产量子磁力仪首次空间应用并获得全球磁场图 由中国科学院国家空间科学中心和沈阳自动化研究所联合研制的国产量子磁力仪(CPT)及伸展臂,可实现全球地磁矢量和标量高精度测量。2022年11月7日,多级套筒式无磁伸展臂顺利展开,将各传感器探头伸出约4.35米距离,处于伸展臂顶端的CPT原子/量子磁力仪探头、AMR磁阻磁力仪探头、NST星敏感器获取了有效探测数据,首次在轨验证了磁场矢量和姿态一体化同步探测技术,磁测量噪声峰峰值<0.1nT,实现了国产量子磁力仪的首次空间验证与应用。 △图5 CPT磁测系统“多级套筒式无磁伸展臂”地面展开测试(图片由沈自所、空间中心和卫星团队提供) △图6 量子磁力仪首张全球磁场勘测图(图片由空间中心太阳活动与空间天气重点实验室提供) △图7 NST星敏感器相对于卫星本体的姿态数据(图片由空间中心和中科新伦琴NST星敏团队提供) 04 空间载荷、平台新技术成果丰富 由中国科学院长春光学精密机械与物理研究所空间新技术部研制的多功能一体化相机,首次采用基于共口径多出瞳光学系统新体制,在轨实现集可见光、长波红外、彩色微光于一体的空间光学遥感观测。相机于2022年9月24日开机,成功取得首张170km×42km大幅宽地面遥感图像(如图8),探索了单台相机即可同时实现多谱段多模态遥感成像的新模式,为我国未来高集成度一体化空间光学遥感载荷发展提供了技术储备。 △图8 多功能一体化相机对地宽幅遥感成像图(图片由长春光学精密机械与物理研究所提供) 由中国科学院半导体研究所、自动化研究所、微小卫星创新研究院及浙江大学航空航天学院空天信息技术研究所联合研制的异构多核智能处理单元也取得了首批成果。半导体所的低功耗边缘计算型智能遥感视觉芯片,实现了遥感图像的高速智能化目标检测;自动化所的通用智能系统验证了基于高速交换网络的异构多处理器模块化、弹性化硬件架构;浙江大学的国产AI系统装载了细胞分割算法和飞机识别算法,数据结果与地面孪生系统数据一致,在功耗10瓦条件下算力达到22Tops,验证了国产AI器件的在轨智能图像处理能力。 △图9 边缘计算型遥感视觉芯片检测遥感目标示意图(图片由中科院半导体所提供) 中科院微小卫星创新院的可展收式辐射器成功在轨实现首次应用,辐射器执行机构已顺利完成六十余次展开和收拢动作,连续五轨动态试验结果(如图10)表明环路热管-可展收式辐射器集成系统在负载工作时段启动性能良好,辐射器连续展开-收拢可实现散热能力在轨大范围调控。 △图10 环路热管-可展收式辐射器集成系统连续五轨智能热控测试结果 国家空间科学中心研制的空间元器件辐射效应试验平台载荷开机运行良好,搭载的元器件在测试期间均工作正常。 “科学与技术成果的涌现体现了我们对这颗卫星‘创新X,创新无极限’的定位,开创了新技术众筹模式的先河。”“力箭一号”工程副总师兼卫星系统总师张永合说,“这些新载荷、新技术产品都是各参与方自主投入的,不少是从0到1的创新,通过试验星将创新技术快速集成并飞行验证,可以加快核心关键技术从基础研究到在轨应用的成果转化。” 2022年7月27日12时12分,由中国科学院自主研制的迄今我国最大固体运载火箭“力箭一号”(ZK-1A)在酒泉卫星发射中心成功发射,采用“一箭六星”的方式,将“创新X”系列首发星——空间新技术试验卫星等六颗卫星送入预定轨道。2022年9月5日,空间新技术试验卫星(SATech-01)发布了首批科学成果,包括龙虾眼X射线成像仪(LEIA)的国际首幅宽视场X射线聚焦成像天图,伽马射线暴载荷(HEBS)的首个伽马暴等。 作为我国“创新X”系列的首发星,未来一段时间,空间新技术试验卫星搭载的几种新型推进系统等载荷也将开展在轨试验,卫星上的四个科学载荷也已进入常规化观测,陆续将会获得更多科学和技术成果。 (总台央视记者 帅俊全 褚尔嘉)
|