李闯进行专业学习。 江腾 摄
曾经的倒数第一
刚分到特勤中队时,李闯不仅身体瘦弱,身体素质也是最差的那个。时隔多年,他依然记得那个下午,那次来队之后第一个5公里长跑测试,虽然拼尽了全力,但他还是落在队伍后面,跑了倒数第一。
从那时起,训练场上就多了一个“疯子”。练体能,他穿着沙背心长跑10公里,后背磨出了血;练攀登、索降,手臂、迎面骨划伤10余处,他依然坚持完成所有课目;练射击,为提高射击的速度和精度,他每天坚持闭目出枪1000次以上,挂水壶据枪两个小时。一年的艰苦超压训练,李闯脱颖而出,成了班里首屈一指的特战尖兵。
入伍19年,“苦练制胜本领,争做特战标兵”始终是李闯激励自己的目标。除完成规定训练任务外,他另外给自己制定了加训内容:早上提前起床,小腿绑上6公斤的沙袋做100个收腹跳,5组100米往返跑、100米蛙跳,然后再随中队出操;上午与中队一起训练,利用训练间隙进行器械训练;晚上做100个俯卧撑,100个单杠拉臂,100个收腹,100个双杠撑臂。
李闯进行理论研讨。 江腾 摄多年的努力和付出造就了李闯过硬的军事素质。多年来,他摸索特种作战规律,认真研读《手枪特种射击》《野外生存法则》等书籍,总结的“快速调整呼吸”“手枪快速换弹夹”“运动中击发训练法”等一系列特种训练方法被官兵广泛运用。不仅如此,熟练掌握攀登越障、擒拿格斗、多能射击、近身搏击等10余项特战技能的李闯,“打造出了一群无所畏惧的‘钢铁硬汉’,锻造出了一批‘格斗专家’‘突击精英’‘狙击能手’‘行动专家’等身怀绝技的特战尖兵”。
“我们的成绩和荣誉都是队长带我们一路闯出来的。”平时,队员们称李闯为“闯队”。正是凭借一股不服输的闯劲,这位曾经的倒数第一已成长为“特战尖兵”中的“标兵”。
李闯组织射击教学。 江腾 摄“特战之王”决胜国际赛场
2015年9月21日,李闯带领5名特战队员代表武警河北总队参加武警部队第二届特勤分队比武。这次比赛,他们从33个分队中脱颖而出,取得团体总分第一、狙击专业第一、侦察专业第二名的成绩,团队被誉为“特战之王”。
2016年,“巅峰”特勤分队尖子比武竞赛的号角吹响,李闯再次带队参赛。此次比武科目以最大限度贴近实战的原则设置,旨在检验特战队员遂行实战任务的能力。5天4夜持续作战,李闯与队友们取得团体总分第二名,斩获总队组第一名,续写了“特战之王”的辉煌。同时获得了参加“勇士竞赛”国际特种兵比武的“入场券”。
李闯指导狙击训练。 江腾 摄经过几个月的备战,2017年5月,李闯带队出国参赛,与来自12个国家的32支代表队展开激烈角逐。初到他国,除了美不胜收的异域风景,更有对环境的陌生。“参加国际级别的比武竞赛,面对12个国家、32支代表队,我们就像是初来乍到的牛犊,”李闯回忆说,“可是我们同样有‘初生牛犊不怕虎’的那股敢打敢拼的劲头。”
小组赛第一个科目是“背水一战”。前一天晚上,李闯拿到比武规则后,就与带队人和翻译官共同研究分析。比武科目刚开始,一切都很顺利,然而化学桶在距离终点100米处滑落在地,被扣了分。第一个项目结束时,队员们都累得瘫倒在地。李闯一边鼓励大家“别灰心,上午丢掉的,下午夺回来”,一边反复研究调整战术和人员分工。
下午的科目是“死亡奔跑”,李闯反复预测各种突发情况,如何采取相应对策,然后将心得分享给大家。队员们翻越高斜墙、攀大绳、爬网墙、钻泥水低桩网、穿Z形水沟……“第一名”的成绩一宣布,队员们拥抱在了一起。在高手云集的赛场上,中方参赛队最终取得了三个科目第一、一个第二、一个第三,一举斩获总冠军。
回国后,李闯和战友们又马上投入到新的备战集训中。
“这次国际特种兵比武给了我们许多启迪,让我们看到了自身的许多问题,打铁要趁热。”无论是高温酷暑还是暴雨滂沱,李闯每天都进行着超越身体极限的高强度训练,将在国际比武中的所思所想融入每天的训练中,以严于实战的标准要求自己。(完)
AI绘画的“小秘密”都在这一篇文章里****** 有了AI,人人都可以是艺术家。AI绘画的出现,恰如瑞士艺术家保罗·克利所言:“艺术不是再现可见,而是使不可见成为可见。”经过20年左右的发展,目前基于不同类型或者模态元素的AI绘画发展情况不尽相同,发展最久的是“以图生图”,再到近期火爆的“文+图”生图。当然,也有团队已经研发出由语音生成图像的技术。 上传一张图片,或者输入一些简单的关键词,系统就能自动生成一张卡通图像……最近一段时间,AI绘画开始在互联网社交平台走红。 AI绘画,顾名思义就是利用人工智能进行绘画,是人工智能生成内容的典型应用场景之一。其主要原理是收集大量已有作品,通过算法对其内容和风格特征进行解析,最后再生成新的作品,所以算法是AI绘画的核心。 当前,“凭空”生成图像的AI绘画,其实也会动辄“翻车”:也许上一秒AI通过你的照片绘出的是一张充满艺术感的二次元画像,下一秒你的宠物猫、狗则可能被画成可爱少女或肌肉猛男。 事实上,AI绘画早已火爆全球。第一张公开展出的、由人工智能创作的绘画作品《埃德蒙·贝拉米的肖像》曾于2018年在佳士得拍卖行以43.25万美元成交,那是一张由机器学习了从14世纪到20世纪的1.5万张肖像画之后自动生成的一张肖像画作品。 AI绘画是如何实现“凭空”生图的?除了娱乐外,AI绘画还有哪些潜在的应用前景? 从“以图生图”到“语音生图” 2022年,由人工智能创作的《太空歌剧院》一度火出圈。在美国科罗拉多州举办的新兴数字艺术家竞赛中,《太空歌剧院》获得“数字艺术/数字修饰照片”类别一等奖。它的构图、配色以及画面的细节堪称精致。然而,这个作品的创作者不是艺术家,而是来自美国科罗拉多州的游戏设计师。 这位游戏设计师在一个名为“Midjourney”的AI创作工具里,先输入几个关键词,如光源、构图、氛围等,得到了100幅作品,再进行约80小时的修图修饰,最终选出3幅作品,最后把图像打印到画布上。 通过简单交互式对话在短时间内生成的“艺术”作品,让人类艺术家展开了一场关于“AI绘画作品参赛是否属于作弊”的争论。这场声势浩大的争论也令大众直观地意识到如今的AI绘画水平已经发展到了何种程度。 “人工智能在艺术方面的创作最早可以追溯到上个世纪末,当时的人工智能绘画技术叫作‘图像的风格化滤镜’。”中国科学院自动化研究所多模态人工智能系统全国重点实验室研究员董未名说,最初的AI绘画方法比较简单,比如一张普通的照片,通过一些图像处理的算法,把照片像素进行几何或者色彩上的变换,然后再调节不同参数,就可以模拟出类似油画或者水彩画的风格。 经过20年左右的发展,目前基于不同类型或者模态元素的AI绘画发展情况不尽相同,发展最久的是“以图生图”,再到近期火爆的“文+图”生图。当然,也有团队已经研发出由语音生成图像的技术。 AI绘画主要依靠三种技术模式实现 董未名介绍,目前AI绘画主要借助图像风格迁移技术、图文预训练模型和扩散模型实现。 “图像风格迁移技术指的是图像处理算法通过对输入的真实图像内容特征和对参考的艺术图像风格特征的提取,实现真实图像内容特征和艺术图像风格特征的融合,从而生成新的艺术图像。”董未名举例,如果将美国旧金山艺术宫的外景照片和印象派创始人莫奈绘制的作品,通过图像风格迁移技术进行融合,就能得到一张看起来像是由莫奈绘制的美国旧金山艺术宫的绘画作品。最初的AI绘画采用的正是这种技术。 不过,在董未名看来,图像风格迁移技术大多依赖的是生成式对抗网络(GAN)算法,它最大的问题是生成的绘画作品艺术性不强,笔触和构图让人觉得与真实的绘画有差距,所以长久以来,AI绘画一直“籍籍无名”。 当图像风格迁移技术还在挣扎于输出作品的审美问题时,图文预训练模型的出现,加速了AI绘画的崛起。 “依托图文预训练模型,只要输入一句话或者上传一幅风格明显的图片,算法就能将图像特征和文字特征‘对齐’。生成的绘画作品的内容特征和上传图片的内容相似,艺术性也比图像风格迁移技术生成的图片强很多。”董未名举例,比如支撑图文预训练模型的可对比语言—图像预训练(CLIP)算法,就是利用图文特征“对齐”的能力,再结合已有的生成模型,实现“以图生图”或者“图+文”生图。 不过,董未名坦言,图文预训练模型的推广也存在一些争议,有部分人认为,该模型在训练前期,需要用大量的图形处理器(GPU)进行数据训练,耗电量大、成本很高,而该模型的应用场景却不够清晰。但也有人认为,也许该模型未来可以打造为通用的人工智能模型,用它完成更多的算法作业,只是这还需要时间的验证。 诚然没有一项技术是完美的,这也为人类探究更先进的技术提供了无限动力。当下最流行的扩散模型便是其中之一。 “目前最新的AI绘画技术采用的就是扩散模型,这种模型可以把一个随机采样的噪声输入模型,然后尝试通过去噪来生成图像。”董未名表示,扩散模型也存在弱点,由于模型对图片内容识别的能力不足,或者难以完全理解识别文字的意义,以及训练数据的偏差,有时便会生成“四不像”的作品。此外,扩散模型生成图片的速度比较慢,目前还达不到实时生成图片。 互联网治理、元宇宙或潜藏应用前景 AI绘画目前的应用场景,更多聚焦于社交软件。近期在国内社交网络“火出天际”的AI绘画软件主要集中在小程序及App。随着AI绘画小程序的火爆,短视频平台抖音也迅速上线了AI绘画特效。同时,此前腾讯上线了“QQ小世界AI画匠”活动,百度也推出了首款AI艺术和创意辅助平台“文心一格”。 有了AI,人人都可以是艺术家。AI绘画的出现,恰如瑞士艺术家保罗·克利所言:“艺术不是再现可见,而是使不可见成为可见。”“AI现在已经完美实现了这一目标,人们可以通过机器计算来绘制出很多现实中见不到的场景。”董未名畅想,不远的将来,AI绘画或许还将展现更丰富的应用场景。 “现在网络上充斥着很多不良内容,这些内容为了逃避监管经常以绘画的形式出现,而当前很多内容识别模型对真实图片识别得很准确,但缺乏不良内容艺术作品的相关训练数据,所以对不良内容识别不准确。也许可以用AI绘画技术,积累不良内容艺术作品的数据,并用以训练识别模型,以提升互联网内容的安全监管能力和识别的准确率。”董未名建议。 在董未名看来,作为一种艺术呈现形式,AI绘画也将在元宇宙、设计、文旅等行业催生新的商业模式。例如AI绘画目前在AI辅助创作、短视频、影视制作和元宇宙等方面都有布局,因为这些赛道都离不开创意,AI绘画可以帮助创作者通过简单的特征输入,实现对其创意的预览,甚至可以直接进行创作。 不过,董未名并不讳言,当下AI绘画仍然存在版权争议问题。AI绘画的核心是模型,而训练模型需要使用大量图像、文本数据。对于未经授权的图片,经过运算之后所生成的图像版权归属尚难界定。“有的画家风格特别明显,如果用画家的画去训练算法模型生成作品,那最后的版权属于谁呢?”董未名提出的问题,正是多数AI绘画作品所面临的现实问题。 AI绘画掀起了一场资本的群体狂欢,希望有一天它能走出“照猫画虎”的尴尬,真正服务艺术创作、创造更多价值。(科技日报记者 金凤) (文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() |